

INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES

QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted an<mark>ilnes & phenols</mark>

Madhu Mishra², Shailja Sachan^{1*}, R.S. Nigam³ and Vikash Pandey²
1, Department of Chemistry, Govt. New Science College, Rewa, (M.P.) - India
2, Department of Chemistry, A.P.S.University, Rewa, (M.P.) - India
3, Department of Chemistry, Rajiv Gandhi College, Sherganj, Satna, (M.P.) - India

Abstract

Based on various topological molecular descriptors, viz. Weiner index, various Randic indices, different molecular connectivity indices, Balaban and different balaban type parameters, several QSAR models were built to estimate the soil sorption coefficients (log K_{oc}) of substituted anilines and phenols. The regression analysis of the data employing the multiple linear analysis. Results showed that a tetra-parametric model was excellent for modeling of these compounds.

Key-Words: QSAR, Balaban, Weiner index

Introduction

The soil coefficient Koc, which determines the partitioning of an organic chemical between the soil sediment and aqueous solution, is an important environmental parameter. K_{oc} is the ratio between the concentration of a chemical adsorbed by the soil normalized to soil organic carbon and those dissolved in the soil water. Thus, K_{oc} is a frequently used parameter to indicate the physical movements of pollutants, chemical degradation. and biodegradation activity of a given species in environment¹⁻⁵, and it is of great use for the environmental risk assessment of organic chemicals. For some chemical species, quantitative structure-activity relationship (QSAR) modeling is a useful technique to correlate their physical, chemical, biological or environmental activities to their physicochemical property descriptors. Because the experimental determination is timeconsuming and expensive, estimated values based on QSAR models are now widely used.

Nowadays, many QSAR models have been developed to predict the soil sorption coefficients of organic chemicals⁶⁻⁹. In these works, satisfactory results were reported for non-polar chemicals, but for polar chemicals such as aniline-type chemicals, phenol-type chemicals, alcohols, organic acid and etc., results usually were poor.

* Corresponding Author E.mail: sachanshailja@gmail.com This can be explained that, general QSAR models are developed for non-polar chemicals, but for polar specific interactions between polar chemicals, chemicals and appropriate soil/sediment constituents (hydrogen bonding, dipole interactions, charge transfer, and etc.) may exist¹⁰. This implies that the soil/sediment sorption behaviors of polar and non-polar organic chemicals are different. Thus, in order to improve the estimate quality for these polar chemicals classes, molecular descriptors which reflect other specific interactions should be also included in addition to n-octanol/water partition coefficients. As we know, descriptors derived from quantum chemical computation can clearly describe molecular structure and electronic properties, and these descriptors can be easily obtained. Therefore, the experiences in which quantum chemical descriptors are included in general QSAR models are popular for development of reliable QSAR models¹¹⁻¹³.

The purpose of this study was to systematically investigate the QSAR models of soil sorption coefficients for substituted anilines and phenols based on various topological molecular descriptors viz. Weiner index, various Randic indices, different molecular connectivity indices, Balaban and different balaban type parameters. The other purpose of this work was to try to explain soil sorption mechanism so that it should be possible in the future to obtain more accurate estimates of soil sorption coefficients for polar organic chemicals.

Material and Methods

Calculation of Molecular Descriptors

Experimentally observed soil sorption coefficients log K_{oc} for 42 substituted anilines and phenols were collected by literature^{14,15}. E-DRAGON software was used to calculate the molecular descriptors at the basis of a fully optimization of the molecular geometry. In this study, in order to understand the nature of the soil sorption coefficients coefficients for polar organic compounds, we calculate the various molecular descriptors such as Weiner index(W), various Balaban and Balaban type descriptors(J, Jhetz, Jhetp, Jhetv, Jhetm, Jhete), Randic indices $({}^{0}\chi, {}^{1}\chi, {}^{2}\chi, {}^{3}\chi)$, different connectivity parameters $({}^{0}\chi^{v}, {}^{1}\chi^{v}, {}^{2}\chi^{v}, {}^{3}\chi^{v})$.

Regression Analysis

NCSS 7.0 software was used to perform regression analysis. For the results of regression analysis, model adequacy was measured as the square of correlation coefficient (\mathbb{R}^2), the adjusted \mathbb{R}^2 for degree of freedom (AR²), mean square error (M.S.E.), the F-value for analysis of variance (F) and the significance Q-test (Q=R/MSE). Single linear regression analysis was performed based on various topological descriptors, respectively.

In order to improve the quality of QSAR model for polar organic chemicals, more than one descriptor should be used in obtained models, thus a multilinear regression analysis was performed. The correlation coefficients between variables in the model were calculated by also using NCSS 7.0 software.

Presentation of Data

In order to compare the prediction ability of this study, the values of soil sorption coefficient (log K_{oc}) for 42 substituted anilines and phenols collected from the literature¹⁵. The structure and toxicity which is represented in terms of $\log K_{oc}$ were listed in Table 1. The topological molecular parameters Winer index(W), various Balaban type parameters (Jhetv and Jhetp), Randic indices($^{2}\chi$), and different connectivity descriptors $({}^{0}\chi^{v}, {}^{1}\chi^{v}, {}^{2}\chi^{v})$ calculated using DRAGON software are listed in Table 2. Correlation matrix is given in Table 3. Various regression equations which are obtained by single and multiple linear regression are presented in Table 4. And after that, actual, predicted and residual values for best model are given in Table 5.

Results and Discussion

Single Linear Regression Analysis

Though single regression analysis, seven regression equations were obtained, but we can find that, for single regression analysis, three equations were satisfactory with R^2 larger than 0.8. These regression

[Sachan et al., 3(5): May, 2012] ISSN: 0976-7126

equations were listed in Table 4. In these three equations (eqn.1, 2 and 3) highest value of R^2 is obtained with second order connectivity (eqn.3), this means ${}^{2}\chi^{v}$ is the largest correlated descriptors with log K_{oc} than any other descriptors. This correlation is showed in Table 3. And eqn.1 and 2 are less significant because of low values of \mathbb{R}^2 , $\mathbb{A}\mathbb{R}^2$, F-ratio and Q-test.

Multiple Linear Regression Analysis

In order to improve the quality of QSAR model, multilinear regression analysis were performed. As we know, models with variables correlated with each other were of no significance. Successive regression analysis resulted into several binary combinations of $2\chi^{v}$ with the Weiner index, Balaban, and connectivity indices used. The best bi-parametric model contained ${}^{0}\chi^{v}$ and $^{2}\chi^{v}$ (eqn.6). Here, In all these three models, second order connectivity have positive coefficient, and therefore, with increasing the value of ${}^{2}\chi^{v}$, toxicity also increases. The regression parameters and the quality of model expressed by eqn. 6, which indicate that addition of ${}^{0}\chi^{v}$, slightly improves the value of variance (R²) increases from 0.87 to 0.88. In best tri-parametric equation contains the following independent variables: Jhetv, Jhetp and ${}^{2}\chi^{v}$. In this equation all regression coefficients (except the Jhetv) were positive sign which indicate that with increasing the value of coefficient of Jhetp and ${}^{2}\chi^{v}$, toxicity also increases. In our best triparametric model the regression parameters and the quality of model expressed by eqn.7, which indicates that addition of the Balaban type indices significantly improves the correlation coefficient and R² increases from 0.88 to 0.92. Also, the quality factor Q increases from 6.2048 to 9.2511.

When Balaban type indices, connectivity parameter and Randic parameter have been tried, a four parametric model is obtained. This model contain one Randic, one connectivity and two Balaban type indices. The adjusted R^2 and value of quality factor are in favour of this combination. A very significant improvement is observed in the variance.

Based on equation 8, we would attempt to explain mechanisms of soil sorption for polar compounds of substituted anilines and phenols. K_{oc} stands for the hydrophobic properties of organic chemicals, compounds with large Koc values will tend to be adsorbed more easily by organic phase than by water phase.

References

1. Hodson J., Williams N.A., The estimation of the adsorption coefficients (Koc) for soils, by high liquid chromatography, performance Chemosphere, 17, (1988), 66-77.

- Meylan W., Howard P.H., Molecular topology/fragment contribution method for predicting soil sorption coefficients, Environ. Sci. Technol., 26, (1992), 1560-1567.
- 3. Muller M., Kordel W., Comparision of screening methods for the estimation of adsorption coefficients on soil, Chemosphere, 32, (1996), 2493-2504.
- 4. Kortvelyesi T., Gorgenyi M., Correlation between retention indices and quantum chemical descriptors of ketones and aldehydes on stationary phases of different polarity, Anal. Chim. Acta., 428, (2001), 1773-1782.
- 5. Moss G.P., Dearden J.C., Quantitative structure permeability relationship (QSPRs) for percutaneous absorption, Toxicol. in Vitro, 16(3), (2002), 299-317.
- 6. Sabljic A., Protic M., Relationship between molecular connectivity indices and soil sorption coefficients of polycyclic aromatic hydrocarbons, Bull. Environ. Contam. Toxicol., 28, (1982), 162-165.
- 7. Sabljic A., Prediction of the nature and strength of soil sorption of organic pollutants by molecular topology, J. Agric. Food. Chem., 32, (1984), 243-246.
- 8. Abdul A.S., Gibon T.L., Statistical correlations for predicting partition coefficient for nonpolar organic contaminants between aquifer organic carbon and water, Hazardous Waste Hazardous Mater, 4, (1987), 211-222.
- 9. Bakul H.R., Shyam R.A., QSAR models to predict effect of ionic strength on sorption of chlorinated benzenes and phenols at sediment-

water interphase, Water Research, 35(14), (2001), 3391-3401[°].

- 10. Oepen B.V., Kordel W., Sorption of polar and nonpolar compounds to soils. Process,
- measurements and experience with the applicability of the modified OECD-guideline.106, Chemosphere, 22, (1991), 285-304.
- 11. Chen J., Peijnenburg W.J.G.M., Quan W., The application of quantum chemical and statistical technique in developing QSPRs for the photo-hydrolysis quantum yields of substituted aromatic halides, Chemosphere, 37, (1998), 1169-1186.
- K., Mikael Multivariate 12. Anna Н., characterization of polycyclic aromatic hydrocarbons using semi-emperical molecule physical orbital calculations and data. Chemosphere, 50(5), (2003), 627-637.
- Fabiana A.L.R., Marcia M.C.F., QSPR models of boiling point, octanol-water partition coefficient and retention time index of polycyclic aromatic hydrocarbons, J. Mol. Struct. : THEOCHEM, 663(1-3), (2003), 109-126.
- 14. Sabljic A., Gusten H., QSAR modeling of soil sorption. Improvements and systematic of log Koc vs log Kow correlations, Chemosphere, 31, (1995), 4489-4514.
- 15. Liu G., YU J., QSAR analysis of soil sorption coefficients for polar organic chemicals : substituted anilines and phenols, Water Research, 39,(2005), 2048-2055.

Comp. No.	Chemical name	Log K _{oc}
1.	PHENOL	1.43
2.	2,3-DICHLOROPHENOL	2.65
3.	2,4-DICHLOROPHENOL	2.75
4.	2,4,6-TRICHLOROPHENOL	3.02
5.	2,4,5-TRICHLOROPHENOL	3.36
6.	3,4,5-TRICHLOROPHENOL	3.56
7.	2,3,4,6-TETRACHLOROPHENOL	3.35
8.	PENTACHLOROPHENOL	3.73
9.	4-BROMOPHENOL	2.41
10.	4-NITROPHENOL	2.37
11.	2-CHLOROPHENOL	2.60
12.	3-CHLOROPHENOL	2.54
13.	3,4-DICHLOROPHENOL	3.09
14.	3,5-DIMETHYLPHENOL	2.83
15.	2,3,5-TRIMETHYLPHENOL	3.61
16.	4-METHYLPHENOL	2.70

Table 1: Structure and toxicity of 42 aniline and phenol derivative

	1'	7 12-	METHOXYPHE	INOI		1.56			
	1		METHOXYPHE			1.50			
	19		HYDROXYPHE			0.98			
	20		5,6-TRICHLOR			2.80			
	2		ETRACHLORO			2.85			
	2		ATECHOL	Sermicel	Ala I	2.03 1.41 1.65			
			NILINE						
	24	16 C C C C C	METHYLANIL	INF					
	2		METHYLANIL			1.90			
	20		CHLOROANIL			1.96			
	2		BROMOANILI			1.06			
100	2		TRIFLUOROM		IF	2.36			
	29		CHLORO-4-ME			1.93			
6	30		METHYL-4-BR			1.90 2.36 1.93 2.26 2.72			
1.S	3		4-DICHLOROA						
12	32		6-DICHLOROA			3.25	199		
184	3.		5-DICHLOROA			2.11	0		
12	34		4-DICHLOROA			2.29	=		
12	3:		3,4-TRICHLOROA			2.60	153		
NTERN	3		3,4,5- TETRAC		NE	3.03	4		
N-	3		3,5,6- TETRAC			3.94			
-	3		ENTACHLORO			4.62	1		
	39		5-DINITROANI			2.55			
		J. J,			-	2.28	-		
) N	METHVI ANII	INF					
5	40		METHYLANIL		F				
5	40	1. N	N-DIMETHYL	ANILINE	-	2.26	1		
	40	1. N 2. D	,N-DIMETHYLA IPHENYLAMIN	ANILINE E		2.26 2.78	1		
Come	40 4 42	1. N 2. D Table 2: C	N-DIMETHYLA IPHENYLAMIN alculated parame	ANILINE E ter of 42 substitu	ited aniline and	2.26 2.78 phenol	2 x		
Comp.No.	40 4 42 W	1. N 2. D Table 2: C Jhetv	N-DIMETHYLA IPHENYLAMIN alculated parame	ANILINE TE ter of 42 substitute $2^{2}\chi$	nted aniline and	2.26 2.78 phenol	2 x ^v		
1.	40 4 42	1. N 2. D Table 2: C Jhetv 2.651	N-DIMETHYLA IPHENYLAMIN Calculated parame Jhetp 2.571	ANILINE IE ter of 42 substitu 2.743	nted aniline and ⁰ χ^V 3.834	2.26 2.78 phenol 1x ^v 2.134	1.336		
1. 2.	40 4 42 82	1. N 2. D Table 2: C Jhetv 2.651 2.971	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018	ANILINE IE ter of 42 substitu 2.743 3.745	ited aniline and ⁰ χ ^V <u>3.834</u> <u>5.947</u>	2.26 2.78 phenol 2.134 3.102	1.336 2.358		
1. 2. 3.	40 41 42 82 84	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952	ANILINE E ter of 42 substitu 2.743 3.745 3.873	1ted aniline and 0 <u>x</u> v 3.834 5.947 5.947	2.26 2.78 phenol 2.134 2.134 3.102 3.096	1.336 2.358 2.439		
1. 2. 3. 4.	40 4 42 82 84 110	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952 3.160	ANILINE TE ter of 42 substitut 2.743 3.745 3.873 4.390	1ted aniline and 0 <u>x</u> V 3.834 5.947 5.947 7.004	2.26 2.78 phenol 1 x ^v 2.134 3.102 3.096 3.579	1.336 2.358 2.439 2.969		
1. 2. 3. 4. 5.	40 4 42 82 84 110 111	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072 3.05	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952 3.160 3.136	ANILINE IE ter of 42 substitu 2.743 3.745 3.873 4.390 4.381	1ted aniline and 0 χ^{V} 3.834 5.947 5.947 7.004 7.004	2.26 2.78 phenol ¹ χ ^v 2.134 3.102 3.096 3.579 3.579	1.336 2.358 2.439 2.969 2.939		
1. 2. 3. 4. 5. 6.	40 4 42 82 84 110 111 110	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072 3.05 3.076	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952 3.160 3.136 3.167	ANILINE IE ter of 42 substitu 2.743 3.745 3.873 4.390 4.381 4.390	1ted aniline and 0 <u>x</u> v 3.834 5.947 5.947 7.004 7.004 7.004	2.26 2.78 phenol ¹ χ ^v 2.134 3.102 3.096 3.579 3.579 3.579	1.336 2.358 2.439 2.969 2.939 2.916		
1. 2. 3. 4. 5. 6. 7.	40 4 42 82 84 110 111 110 140	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072 3.05 3.076 3.238 3.03	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952 3.160 3.136 3.167 3.366	ANILINE Ter of 42 substitu 2x 2.743 3.745 3.873 4.390 4.381 4.390 4.768	1ted aniline and 0 <u>x</u> <u>v</u> 3.834 5.947 5.947 7.004 7.004 7.004 8.060	2.26 2.78 phenol ¹ χ ^v 2.134 3.102 3.096 3.579 3.579 3.579 4.069	1.336 2.358 2.439 2.969 2.939 2.916 3.387		
1. 2. 3. 4. 5. 6. 7. 8.	40 4 42 82 84 110 111 110 140 174	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072 3.05 3.076 3.238 3.402	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952 3.160 3.136 3.167 3.366 3.565	ANILINE E ter of 42 substitu 2.743 3.745 3.873 4.390 4.381 4.390 4.768 5.155	1ted aniline and 0 <u>x</u> v 3.834 5.947 5.947 7.004 7.004 7.004 8.060 9.117	2.26 2.78 phenol ¹ χ ^v 2.134 3.102 3.096 3.579 3.579 3.579 4.069 4.558	1.336 2.358 2.439 2.969 2.939 2.916 3.387 3.808		
1. 2. 3. 4. 5. 6. 7. 8. 9.	40 4 42 82 84 110 111 110 140 174 62	I. N 2. D Table 2: O Jhetv 2.651 2.971 2.909 3.072 3.05 3.076 3.238 3.402 2.822 2.822	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952 3.160 3.136 3.167 3.366 3.565 2.799	ANILINE E ter of 42 substitu 2.743 3.745 3.873 4.390 4.381 4.390 4.768 5.155 3.365	1ted aniline and 0 <u>x</u> v 3.834 5.947 5.947 7.004 7.004 7.004 8.060 9.117 5.721	2.26 2.78 phenol ¹ χ ^v 2.134 3.102 3.096 3.579 3.579 3.579 4.069 4.558 3.027	1.336 2.358 2.439 2.969 2.939 2.916 3.387 3.808 2.392		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	40 4 42 82 84 110 111 110 140 174 62 120	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072 3.076 3.238 3.402 2.822 2.248 3.402	N-DIMETHYLA IPHENYLAMIN alculated parame 2.571 3.018 2.952 3.160 3.136 3.167 3.366 3.565 2.799 2.060	ANILINE E ter of 42 substitu 2.743 3.745 3.873 4.390 4.381 4.390 4.768 5.155 3.365 4.264	1ted aniline and 0 <u>x</u> V 3.834 5.947 5.947 7.004 7.004 7.004 8.060 9.117 5.721 5.020	2.26 2.78 phenol ¹ χ ^v 2.134 3.102 3.096 3.579 3.579 3.579 4.069 4.558 3.027 2.634	1.336 2.358 2.439 2.969 2.939 2.916 3.387 3.808 2.392 1.774		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	40 4 42 82 84 110 111 110 140 174 62 120 60	I. N 2. D Table 2: O Jhetv 2.651 2.971 2.909 3.072 3.07 3.076 3.238 3.402 2.822 2.248 2.816 3.61	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952 3.160 3.136 3.167 3.366 3.565 2.799 2.060 2.806	ANILINE Ter of 42 substitu 2.743 3.745 3.873 4.390 4.381 4.390 4.768 5.155 3.365 4.264 3.239	1ted aniline and 0 χ V 3.834 5.947 5.947 7.004 7.004 7.004 8.060 9.117 5.721 5.020 4.891	2.26 2.78 phenol ¹ χ ^v 2.134 3.102 3.096 3.579 3.579 3.579 4.069 4.558 3.027 2.634 2.618	1.336 2.358 2.439 2.969 2.939 2.916 3.387 3.808 2.392 1.774 1.859		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	40 4 42 82 84 110 111 110 140 174 62 120 60 61	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072 3.05 3.076 3.238 3.402 2.822 2.248 2.816 2.773	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952 3.160 3.136 3.167 3.366 3.565 2.799 2.060 2.806 2.763	ANILINE Ter of 42 substitu 2,743 3,745 3,873 4,390 4,381 4,390 4,768 5,155 3,365 4,264 3,239 3,377	% % 0x % 3.834 5.947 5.947 7.004 7.004 7.004 7.004 8.060 9.117 5.721 5.020 4.891 4.891 4.891	2.26 2.78 phenol 1 χ^v 2.134 3.102 3.096 3.579 3.579 3.579 3.579 4.069 4.558 3.027 2.634 2.618 2.612	1.336 2.358 2.439 2.969 2.939 2.916 3.387 3.808 2.392 1.774 1.859 1.916		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	40 4 42 82 84 110 111 110 140 174 62 120 60 61 84	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072 3.05 3.076 3.238 3.402 2.822 2.248 2.816 2.773 2.911	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952 3.160 3.136 3.167 3.366 3.565 2.799 2.060 2.806 2.763 2.956	ANILINE E ter of 42 substitu 2,743 3,745 3,873 4,390 4,381 4,390 4,381 4,390 4,768 5,155 3,365 4,264 3,239 3,377 3,873	uted aniline and ° χ^{V} 3.834 5.947 5.947 7.004 7.004 7.004 8.060 9.117 5.721 5.020 4.891 4.891 5.947	2.26 2.78 phenol ¹ χ^v 2.134 3.102 3.096 3.579 3.579 3.579 4.069 4.558 3.027 2.634 2.618 2.612 3.096	1.336 2.358 2.439 2.969 2.939 2.916 3.387 3.808 2.392 1.774 1.859 1.916 2.413		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	40 4 42 82 84 110 111 110 140 174 62 120 60 61 84 84	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072 3.05 3.076 3.238 3.402 2.822 2.248 2.816 2.773 2.901 2.904	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952 3.160 3.136 3.167 3.366 3.565 2.799 2.060 2.806 2.763 2.956 2.845	ANILINE E ter of 42 substitu 2,743 3,745 3,873 4,390 4,381 4,390 4,768 5,155 3,365 4,264 3,239 3,377 3,873 4,023	% % 0.2.V 3.834 5.947 5.947 5.947 7.004 7.004 7.004 7.004 7.004 7.004 5.920 4.891 5.947 5.947 5.020 4.891 5.947 5.947 5.679	2.26 2.78 phenol ¹ χ ^v 2.134 3.102 3.096 3.579 3.579 3.579 4.069 4.558 3.027 2.634 2.618 2.612 3.096 2.956	1.336 2.358 2.439 2.969 2.939 2.916 3.387 3.808 2.392 1.774 1.859 1.916 2.413 2.346		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	40 4 42 82 84 110 111 110 140 174 62 120 60 61 84 84 110	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072 3.05 3.076 3.238 3.402 2.822 2.248 2.816 2.773 2.901 2.904 3.072 3.072	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952 3.160 3.136 3.167 3.366 3.565 2.799 2.060 2.806 2.763 2.956 2.845 3.018	ANILINE E ter of 42 substitu 2,743 3,745 3,873 4,390 4,381 4,390 4,768 5,155 3,365 4,264 3,239 3,377 3,873 4,023 4,39	% % 3.834 5.947 5.947 5.947 7.004 7.004 7.004 7.004 7.004 8.060 9.117 5.721 5.020 4.891 4.891 5.947 5.679 6.602	2.26 2.78 phenol ¹ χ ^v 2.134 3.102 3.096 3.579 3.579 4.069 4.558 3.027 2.634 2.612 3.096 2.956 3.378	1.336 2.358 2.439 2.969 2.939 2.916 3.387 3.808 2.392 1.774 1.859 1.916 2.413 2.346 2.726		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	40 4 42 82 84 110 111 110 140 174 62 120 60 61 84 84 110 62	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072 3.05 3.076 3.238 3.402 2.822 2.248 2.816 2.773 2.901 2.904 3.072 2.738	N-DIMETHYLA IPHENYLAMIN alculated parame 2.571 3.018 2.952 3.160 3.136 3.167 3.366 3.565 2.799 2.060 2.806 2.763 2.956 2.845 3.018 2.673	ANILINE E ter of 42 substitu 2.743 3.745 3.873 4.390 4.381 4.390 4.768 5.155 3.365 4.264 3.239 3.377 3.873 4.023 4.39 3.365	% % 3.834 5.947 5.947 5.947 7.004 7.004 7.004 7.004 7.004 8.060 9.117 5.721 5.020 4.891 4.891 5.947 5.679 6.602 4.757 1.002	2.26 2.78 phenol ¹ x ^v 2.134 3.102 3.096 3.579 3.579 3.579 4.069 4.558 3.027 2.634 2.612 3.096 2.956 3.378 2.545	1.336 2.358 2.439 2.969 2.939 2.916 3.387 3.808 2.392 1.774 1.859 1.916 2.413 2.346 2.726 1.836		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	40 4 42 82 84 110 111 110 140 174 62 120 60 61 84 84 110 62 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 86	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072 3.05 3.076 3.238 3.402 2.822 2.248 2.816 2.773 2.901 2.904 3.072 2.738 2.223 3.072	N-DIMETHYLA IPHENYLAMIN alculated parame 2.571 3.018 2.952 3.160 3.136 3.167 3.366 3.565 2.799 2.060 2.806 2.763 2.956 2.845 3.018 2.673 2.086	ANILINE E ter of 42 substitu 2.743 3.745 3.873 4.390 4.381 4.390 4.381 4.390 4.768 5.155 3.365 4.264 3.239 3.377 3.873 4.023 4.39 3.365 3.365 3.343	% % 3.834 5.947 5.947 5.947 7.004 7.004 7.004 7.004 7.004 8.060 9.117 5.721 5.020 4.891 4.891 5.947 5.679 6.602 4.757 5.165	2.26 2.78 phenol ¹ χ^v 2.134 3.102 3.096 3.579 3.579 3.579 3.579 4.069 4.558 3.027 2.634 2.618 2.612 3.096 2.956 3.378 2.545 2.663	$\begin{array}{r} 1.336\\ 2.358\\ 2.439\\ 2.969\\ 2.939\\ 2.916\\ 3.387\\ 3.808\\ 2.392\\ 1.774\\ 1.859\\ 1.916\\ 2.413\\ 2.346\\ 2.726\\ 1.836\\ 1.672\\ \end{array}$		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	40 4 42 82 84 110 111 110 140 174 62 120 60 61 84 110 62 120 60 61 84 84 84 84 84 84 84 84 84 84 84 84 86 88	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072 3.05 3.076 3.238 3.402 2.822 2.248 2.816 2.773 2.911 2.904 3.072 2.738 2.223 2.19	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952 3.160 3.136 3.167 3.366 3.565 2.799 2.060 2.806 2.763 2.956 2.845 3.018 2.673 2.086 2.057	ANILINE E ter of 42 substitu 2,743 3,745 3,873 4,390 4,381 4,390 4,768 5,155 3,365 4,264 3,239 3,377 3,873 4,023 4,39 3,365 3,43 3,546	% 0x 3.834 5.947 5.947 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 8.060 9.117 5.721 5.020 4.891 5.947 5.679 6.602 4.757 5.165 5.165	2.26 2.78 phenol ¹ χ ^v 2.134 3.102 3.096 3.579 3.579 4.069 4.558 3.027 2.634 2.618 2.612 3.096 2.956 3.378 2.545 2.663 2.657	$\begin{array}{r} 1.336\\ 2.358\\ 2.439\\ 2.969\\ 2.939\\ 2.916\\ 3.387\\ 3.808\\ 2.392\\ 1.774\\ 1.859\\ 1.916\\ 2.413\\ 2.346\\ 2.726\\ 1.836\\ 1.672\\ 1.701\\ \end{array}$		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.	40 4 42 82 84 110 111 110 140 174 62 120 60 61 84 110 62 120 60 61 84 84 110 62 86 88 61	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072 3.05 3.076 3.238 3.402 2.822 2.248 2.816 2.773 2.911 2.904 3.072 3.072 2.738 2.223 2.19 2.519	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952 3.160 3.136 3.136 3.167 3.366 3.565 2.799 2.060 2.806 2.763 2.956 2.845 3.018 2.673 2.086 2.057 2.408	ANILINE E ter of 42 substitu 2,743 3,745 3,873 4,390 4,381 4,390 4,768 5,155 3,365 4,264 3,239 3,377 3,873 4,023 4,39 3,365 3,43 3,546 3,377	% 0x 3.834 5.947 5.947 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 8.060 9.117 5.721 5.020 4.891 5.947 5.679 6.602 4.757 5.165 5.165 4.204	2.26 2.78 phenol ¹ χ ^v 2.134 3.102 3.096 3.579 3.579 4.069 4.558 3.027 2.634 2.618 2.612 3.096 2.956 3.378 2.545 2.663 2.657 2.269	$\begin{array}{r} 1.336\\ 2.358\\ 2.439\\ 2.969\\ 2.939\\ 2.916\\ 3.387\\ 3.808\\ 2.392\\ 1.774\\ 1.859\\ 1.916\\ 2.413\\ 2.346\\ 2.726\\ 1.836\\ 1.672\\ 1.701\\ 1.520\\ \end{array}$		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	40 4 42 82 84 110 111 110 140 174 62 120 60 61 84 110 62 120 60 61 84 84 84 84 84 84 84 84 84 84 84 84 86 88	I. N 2. D Table 2: C Jhetv 2.651 2.971 2.909 3.072 3.05 3.076 3.238 3.402 2.822 2.248 2.816 2.773 2.911 2.904 3.072 2.738 2.223 2.19	N-DIMETHYLA IPHENYLAMIN Calculated parame 2.571 3.018 2.952 3.160 3.136 3.167 3.366 3.565 2.799 2.060 2.806 2.763 2.956 2.845 3.018 2.673 2.086 2.057	ANILINE E ter of 42 substitu 2,743 3,745 3,873 4,390 4,381 4,390 4,768 5,155 3,365 4,264 3,239 3,377 3,873 4,023 4,39 3,365 3,43 3,546	% 0x 3.834 5.947 5.947 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 7.004 8.060 9.117 5.721 5.020 4.891 5.947 5.679 6.602 4.757 5.165 5.165	2.26 2.78 phenol ¹ χ ^v 2.134 3.102 3.096 3.579 3.579 4.069 4.558 3.027 2.634 2.618 2.612 3.096 2.956 3.378 2.545 2.663 2.657	$\begin{array}{r} 1.336\\ 2.358\\ 2.439\\ 2.969\\ 2.939\\ 2.916\\ 3.387\\ 3.808\\ 2.392\\ 1.774\\ 1.859\\ 1.916\\ 2.413\\ 2.346\\ 2.726\\ 1.836\\ 1.672\\ 1.701\\ \end{array}$		

[Sachan *et al.*, 3(5): May, 2012] ISSN: 0976-7126

	,	PLCP								76-7126
23.	42	2	.836	2.775	2	2.743	3.964	1	2.199	1.411
24.	61	2	927	2.877	3	3.377		7	2.610	1.914
25.	62	2	.888	2.839		3.365		7	2.610	1.911
26.	62	2	.888	2.901	3	3.365	5.021	1	2.677	1.988
27,	62	2	.981	2.98	1013	3.365	5.851	1	3.092	2.467
28.	148	2	.351	2.123	4	5.335	5.521		2.927	2.123
29.	116	2	.456	2.361	4	1.064	6.352	2	3.206	2.301
30.	84 3.128			3.128	3	3.873 3.873		3	3.509	2.863 2.509
31.	84			3.112	3			7 <	3.161	
32.	82	8	3.11	3.183		3.745		7	3.167	2.450
33.	84		.038	3.107		4.023	6.077		3.155	2.576
34.	84		.045	3.115		3.873	6.077		3.161	2.488
35.	109		.225	3.345		4.250		1	3.650	2.928
36.	140		.351	3.507		1.768	8.190		4.134	3.431
37.	140		.349	3.503		1.768	8.190		4.134	3.452
38.	174		.506	3.696		5.155	9.247		4.623	3.873
39.	240		.373	2.143		5.82		7	3.198	2.297
40.	64		.478	2.371		2.912			2.661	1.616
41.	88			2.262		3.642	4.887		3.029	2.23
42.	264		.815	1.714		5.244	7.274		4.321	2.857
				e 3: Corre		atrix				1
2		log K _{oc}	W	Jhetv	Jhetp	2χ	°χ ^v	¹ χ ^v	2χ	
	log K	1	0.5502	0.6361	0.6828	0.6781	0.8945	0.8984	0.9350	
_	log K _{oc} W	1	0.3302	-0.0810	-0.0578	0.9277	0.7431	0.7752	0.6528	\sim
	Jhety		1	-0.0010	0.9941	0.1464	0.5122	0.4584	0.6275	
	_			2.5						
	Jhetp				1	0.1569	0.5424	0.4967	0.6570	
	² χ				-/	1	0.8094	0.8119	0.7629	
				41-5			1	0.9886	0.9798	
	⁰ x ^v									
	⁰ χ ^v	2		11/210				/71	0.9724	
	$\frac{{}^{0}\chi^{v}}{{}^{1}\chi^{v}}$	>		1/20	2				0.9724	
	⁰ χ ^v	D		H		J		Л		
	$\frac{{}^{0}\chi^{v}}{{}^{1}\chi^{v}}$ $\frac{{}^{2}\chi^{v}}{{}^{2}\chi^{v}}$	U		e 4: Regre	-			4		
Regression E	$\frac{{}^{0}\chi^{v}}{{}^{1}\chi^{v}}$ $\frac{{}^{2}\chi^{v}}{{}^{2}\chi^{v}}$	U		le 4: Regre	ession equ R ²	lation (N	=42) MSE	F-RATIO]]]ue
	$\frac{\sqrt[0]{\chi^v}}{\sqrt[1]{\chi^v}}$.0556) ⁰ χ ^v			R ²	AR ²	MSE	F-RATIO		llue 3.4509
$\log K_{oc} = -1.646$	$\frac{\sqrt[0]{x^v}}{\sqrt[1]{x^v}}$ $\frac{\sqrt[1]{x^v}}{\sqrt[2]{x^v}}$ quations $\frac{\sqrt[3]{3}+0.7032(0)}{\sqrt[3]{3}+0.7032(0)}$			ations	R ²	AR² 0.8001 (MSE 0.7952 0	F-RATIO 0.2592 1	1 D Q-va	
$\log K_{oc} = -1.646$ $\log K_{oc} = -2.122$	$ \frac{{}^{0}\chi^{v}}{{}^{1}\chi^{v}} $ $ \frac{{}^{2}\chi^{v}}{{}^{2}\chi^{v}} $ quations $ \frac{{}^{3}+0.7032(0)}{{}^{2}+1.5017(0)} $.1160) ¹ χ ^ν		ations 1 2	\mathbf{R}^2 \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C}	AR² 0.8001 (0 .8073 (0	MSE 0.7952 0 0.8025 0	F-RATIO 0.2592 1 0.2499 1	1 D Q-va 60.148 67.550	3.4509 3.5954
$\log K_{oc} = -1.646$ $\log K_{oc} = -2.122$ $\log K_{oc} = -1.127$	$ \begin{array}{c} 0 \chi^{v} \\ \frac{1}{\chi^{v}} \\ \frac{2}{\chi^{v}} \\ \frac{2}{\chi^{v}} \\ \frac{3}{\chi^{v}} \\ \frac{3}{\chi^{v}$.1160) ¹ χ ^ν .0938) ² χ ^ν	Equ	ations 1 2	$\frac{\mathbf{R}^2}{\mathbf{R}^2}$	AR ² 0.8001 0 .8073 0 0.8742 0	MSE 0.7952 0 0.8025 0 0.8711 0	F-RATIO 0.2592 1 0.2499 1 0.1631 2	1 D Q-va 60.148 67.550 78.067	3.4509 3.5954 5.7325
$\log K_{oc} = -1.646$ $\log K_{oc} = -2.122$ $\log K_{oc} = -1.127$	$ \begin{array}{c} 0 \chi^{v} \\ \frac{1}{\chi^{v}} \\ \frac{2}{\chi^{v}} \\ \frac{2}{\chi^{v}} \\ \frac{3}{\chi^{v}} \\ \frac{3}{\chi^{v}$.1160) ¹ χ ^ν .0938) ² χ ^ν	Equ	ations 1 2	$\frac{\mathbf{R}^2}{\mathbf{R}^2}$	AR ² 0.8001 0 .8073 0 0.8742 0	MSE 0.7952 0 0.8025 0 0.8711 0	F-RATIO 0.2592 1 0.2499 1 0.1631 2	1 D Q-va 60.148 67.550	3.4509 3.5954
$\log K_{oc} = -1.646$	⁰ χ ^v ¹ χ ^v ² χ ^v ² χ ^v ³ +0.7032(0) ² +1.5017(0) ² 6+1.5637(0) 0-0.0023(0)	.1160) ¹ χ ^v .09 <mark>38</mark>) ² χ ^v 0016)W+0.	Equ : 6781(0.12	ations 1 222) ² χ^{v}		AR ² 0.8001 0 .8073 0 0.8742 0 0.8805 0	MSE 0.7952 0 0.8025 0 0.8711 0 0.8744 0	F-RATIO 0.2592 1 0.2499 1 0.1631 2 0.1589 1	1 D Q-va 60.148 67.550 78.067	3.4509 3.5954 5.7325
$\log K_{oc} = -1.646$ $\log K_{oc} = -2.122$ $\log K_{oc} = -1.127$ $\log K_{oc} = -1.171$ $\log K_{oc} = -1.629$	0xv 1xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xv 2xvv 2xvv 2xvv 2xvv 2xvv 2xvvv 2xvvvvvvvvvvvvv	.1160) ¹ χ ^v .0938) ² χ ^v 0016)W+0. .1766)Jhetg	Equ 6781(0.12 +1.4313(0	ations 1 22) ² χ^{v} .1218) ² χ^{v}		AR ² 0.8001 0 .8073 0 0.8742 0 0.8805 0 0.8825 0	MSE 0.7952 0 0.8025 0 0.8711 0 0.8744 0 0.8765 0	F-RATIO 0.2592 1 0.2499 1 0.1631 2 0.1589 1 0.1563 1	1 D Q-va 60.148 67.550 78.067 43.745	3.4509 3.5954 5.7325 5.9049
$p_{c} = -1.646$ $p_{c} = -1.127$ $p_{c} = -1.127$ $p_{c} = -1.127$ $p_{c} = -1.171$ $p_{c} = -1.629$ $p_{c} = -0.669$	⁰ χ ^v ¹ χ ^v ² 2χ ^v <th<sup>22χ^v <th<sup>22χ^v<!--</td--><td>.1160)¹χ^v .0938)²χ^v 0016)W+0. .1766)Jhetr 2127)⁰χ^v+2</td><td>Equa 6781(0.12 +1.4313(0 .4512(0.45</td><td>ations 1 222)²χ^{v} .1218)²χ^{v} .225)²χ^{v}</td><td></td><td>AR² 0.8001 0 .8073 0 0.8742 0 0.8805 0 0.8825 0 0.8860 0</td><td>MSE 0.7952 0 0.8025 0 0.8711 0 0.8765 0</td><td>F-RATIO 0.2592 1 0.2499 1 0.1631 2 0.1589 1 0.1563 1</td><td>1 D Q-va 60.148 67.550 78.067 43.745 46.436 46.436</td><td>3.4509 3.5954 5.7325 5.9049 6.0100</td></th<sup></th<sup>	.1160) ¹ χ ^v .0938) ² χ ^v 0016)W+0. .1766)Jhetr 2127) ⁰ χ ^v +2	Equa 6781(0.12 +1.4313(0 .4512(0.45	ations 1 222) ² χ^{v} .1218) ² χ^{v} .225) ² χ^{v}		AR ² 0.8001 0 .8073 0 0.8742 0 0.8805 0 0.8825 0 0.8860 0	MSE 0.7952 0 0.8025 0 0.8711 0 0.8765 0	F-RATIO 0.2592 1 0.2499 1 0.1631 2 0.1589 1 0.1563 1	1 D Q-va 60.148 67.550 78.067 43.745 46.436 46.436	3.4509 3.5954 5.7325 5.9049 6.0100
$\sum_{c} \sum_{c} \sum_{c$	⁰ χ ^v ¹ χ ^v ² 2χ ^v <th<sup>22χ^v <th<sup>22χ^v<!--</td--><td>.1160)¹χ^v .0938)²χ^v 0016)W+0. .1766)Jhetr 2127)⁰χ^v+2</td><td>Equa 6781(0.12 +1.4313(0 .4512(0.45</td><td>ations 1 222)²χ^{v} .1218)²χ^{v} .225)²χ^{v}</td><td>R² 0 2 0 3 0 4 0 5 0 6 0 1.2807(0.14)</td><td>AR^2 0.8001 0.8073 0.8742 0.8742 0.8805 0.8805 0.8825 0.8860 $0.47)^2 \chi^{v}$</td><td>MSE 0.7952 0 0.8025 0 0.8711 0 0.8744 0 0.8765 0 0.8801 0</td><td>F-RATIO 0.2592 1 0.2499 1 0.1631 2 0.1589 1 0.1563 1 0.1517</td><td>1 D Q-va 60.148 67.550 78.067 43.745 46.436 151.492</td><td>3.4509 3.5954 5.7325 5.9049 6.0100 6.2048</td></th<sup></th<sup>	.1160) ¹ χ ^v .0938) ² χ ^v 0016)W+0. .1766)Jhetr 2127) ⁰ χ ^v +2	Equa 6781(0.12 +1.4313(0 .4512(0.45	ations 1 222) ² χ^{v} .1218) ² χ^{v} .225) ² χ^{v}	R ² 0 2 0 3 0 4 0 5 0 6 0 1.2807(0.14)	AR^2 0.8001 0.8073 0.8742 0.8742 0.8805 0.8805 0.8825 0.8860 $0.47)^2 \chi^{v}$	MSE 0.7952 0 0.8025 0 0.8711 0 0.8744 0 0.8765 0 0.8801 0	F-RATIO 0.2592 1 0.2499 1 0.1631 2 0.1589 1 0.1563 1 0.1517	1 D Q-va 60.148 67.550 78.067 43.745 46.436 151.492	3.4509 3.5954 5.7325 5.9049 6.0100 6.2048
$\log K_{oc} = -1.646$ $\log K_{oc} = -2.122$ $\log K_{oc} = -1.127$ $\log K_{oc} = -1.171$ $\log K_{oc} = -1.629$	$\begin{array}{c} & 0 \\ \chi^{v} \\ \hline \chi^{v} \\ \hline 2 \\ \chi^{v} \\ \chi^{v} \\ \hline 2 \\ \chi^{v} \\ \chi^{v}$.1160) ¹ χ ^v .0938) ² χ ^v 0016)W+0. .1766)Jhetr 2127) ⁰ χ ^v +2 431)Jhetv+	Equa 6781(0.12 +1.4313(0 .4512(0.45 5.2394(1.0	ations 1 22) ² χ^{v} .1218) ² χ^{v} (325) ² χ^{v} (984)Jhetp+	R ² 0 2 0 3 0 4 0 5 0 1.2807(0.147) 0	AR ² 0.8001 0 .8073 0 0.8742 0 0.8805 0 0.8885 0 0.8860 0 0.47) ² χ ^v 9239	MSE 0.7952 0 0.8025 0 0.8711 0 0.8744 0 0.8765 0 0.8801 0 0.9178 0	F-RATIO 0.2592 1 0.2499 1 0.1631 2 0.1589 1 0.1563 1 0.1563 1 0.1517 0.1039	1 D Q-va 60.148 67.550 78.067 43.745 46.436 46.436	3.4509 3.5954 5.7325 5.9049 6.0100

[Sachan *et al.*, 3(5): May, 2012] ISSN: 0976-7126

Row	Actual	Predicted	Residual		22	0.950	1.203	-0.253
1	1.460	1.055	0.405		23	0.940	1.098	-0.158
2	2.840	2.819	0.021		24	1.400	1.716	-0.316
3	3.060	2.948	0.112	PH	25	1.390	1.746	-0.356
4	3.690	3.719	-0.029	1	26	1.880	2.232	-0.352
5	3.720	3.697	0.023	-	27	2.260	2.404	-0.144
6	4.140	3.699	0.441	-	28	2.290	1.852	0.438
7	4.450	4.318	0.132		29	1.850	2.315	-0.465
8	5.120	4.890	0.230	-	30	2.530	2.783	-0.253
9	2.590	2.320	0.270		31	2.910	3.076	-0.166
10	1.910	1.533	0.377	1	32	2.820	2.959	-0.139
11	2.150	1.985	0.165		33	2.900	3.187	-0.287
12	2.500	2.114	0.386	1	34	2.690	3.066	-0.376
13	3.330	2.942	0.388		35	3.680	3.739	-0.059
14	2.350	2.237	0.113	1	36	4.570	4.457	0.113
15	2.920	2.560	0.360		37	4.460	4.460	0.000
16	1.940	1.697	0.243		38	5.080	5.044	0.036
17	1.320	1.501	-0.181		39	1.890	2.139	-0.249
18	1.580	1.621	-0.041	77	40	1.660	1.267	0.393
19	0.800	1.325	-0.525	(mi)) (41	2.310	1.894	0.416
20	3.190	3.436	-0.246		42	3.5	3.633	-0.133
21	3.630	3.962	-0.332		-			1
E	H		936x + 0.170 ² = 0.936			**	ЛЛ	R
	I Koc	4 -				•		
	Calculated Koc	3 -			•			
	Calcu	2 -						
		•						
		1 -						
		0	1 1			1		
		0	1 2	3		4	5	6
				Observed	Кос		11	
			ph plotted bety	,				

Table 5: Observed (Obs.), Predicted (Pre.) Residual Value Obtained using Equation 08